
Molecular thermodynamic model for equilibria in solution

IV. Macroscopic partition functions

A. Braibanti*, E. Fisicaro, C. Compari

Pharmaceutical Department, Section of Applied Physical Chemistry, University of Parma, I-43100 Parma, Italy

Received 14 January 1998; accepted 1 July 1998

Abstract

The molecular ensembles statistically distributed according to internal speci®c characteristics and distinguished for the

different exchanges with the surroundings are represented on the macroscopic scale by appropriate partition functions. The

partition function for osmotic non-reacting ensemble is a function of concentration or activity of the ligand and is suited to the

de®nition of thermodynamic potential �. The partition function for thermal non-reacting ensemble shows the dependence

upon the temperature and that for thermo-osmotic non-reacting ensemble shows the dependence upon both concentration and

temperature.

The reaction partition function is suited to show the distribution of the different species over the different enthalpy levels of

the reacting ensemble. The dispersion of the distributions are represented by second derivatives of the partition function.

The information contained in the entropy axis of the thermodynamic space for reacting ensembles concerning the induced

dilution of the bound ligand and ®nal dilution of the free ligand can be spanned to a formation function diagram where free

energy of reaction can be graphically represented. # 1998 Elsevier Science B.V.
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1. Introduction

In preceding articles [1±3], a statistical thermody-

namic model for solutions has been developed. The

properties of molecular ensembles for solution statis-

tically distributed according to speci®c characteristics

are represented on the macroscopic scale by appro-

priate partition functions. The derivatives of these

function which describe the experimentally determin-

able properties of actual thermodynamic systems are

here presented and analyzed.

2. Partition functions

Formally, the properties of each type of ensemble

are expressed by the mathematical properties of their

respective partition function.

2.1. Osmotic no-reaction partition

function

The osmotic non-reacting ensemble nreo is open to

the exchange of matter but closed to the exchange of

heat. The osmotic no-reaction partition function ÿA is

referred to 1 mol and is therefore a partial molar
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quantity

ÿA�exp�ÿ�A=RT�� exp�ÿhA=RT�exp�sA=R�
(1)

where sA�sA ([A]) is the entropy dependent upon the

concentration [A]. The derivative of the logarithm of

the microcanonical partition function ln ÿA with

respect to ln[A] is

@lnÿA=@ln�A� � @�ÿ�A=RT�=@ln�A� (2)

By recalling the relationship between entropy and

dilution

dsA � ÿR d ln�A� (3)

and by considering that the enthalpy factor is constant,

one can write

@ lnÿA=@ln�A� � @�sA=R�=@ln�A� � ÿ1 (4)

The Eq. (4) by comparison with the Eq. (2) yields

@�ÿ�A=RT�=@ln�A� � ÿ1 (5)

which can be integrated

�A � ��A � RT ln�A� (6)

This is the general equation de®ning the chemical

potential under the ideal condition that the concentra-

tion [A] equals the activity of A. It can be recalled

from the Eq. (3) that the Eq. (6) is proportional to a

change of entropy (i.e. dilution).

There is no dispersion of the enthalpy around the

mean value and consequently the isobaric heat capa-

city is null, Cp,A�0. The dispersion or variance of

entropy, is not null var s[A]�ÿ1 as shown by the

second moment of the distribution of the Eq. (4).

2.2. Thermal no-reaction partition function

The thermal non-reacting ensemble nret is charac-

terized by being open to the exchange of heat but not

to the exchange of matter. The system is closed and

contained in a vessel with diathermal walls. There is

no change of species concentration because the system

is non-reacting. The thermal no-reaction partition

function �i of the species i represents the distribution

of different conformational, translational, rotational,

and vibrational modi®cations of the species among the

different sublevels j of the set i. The logarithm of the

canonical partition function can be derived with

respect to the temperature. The ®rst derivative of ln�i

is the enthalpy of the species

@ln�i=@ln�1=T� � ÿHi=R (7)

�1=T�@ln�i=@ln�1=T�
� @ln�i=@lnT � ÿ�1=T�Hi=R (8)

and the second derivative is the non-null isobaric heat

capacity, Cp,i

@2ln�i=@ln�1=T�@T � Cp;i=R (9)

The ®rst derivative of ln �i with respect to lnT is the

entropy of the species i

@ln�i=@ln T � Si=R (10)

and the second derivative is again the isobaric heat

capacity

@2ln�i=@�lnT�2 � Cp;i=R (11)

The isobaric heat capacity in thermal non-reacting

ensembles is a measure of the dispersion (or variance)

of both enthalpy and entropy. In fact

Cp;i=R � �1=R�2�h�Hi;j=T�2i ÿ h�Hi;j=T�i2�
(12)

where the average is extended to all the energy sub-

levels j of the level i. The dispersion around the

average enthalpy is due to the changes of population

in the translational, rotational, and vibrational sub-

levels.

When the isobaric heat capacity is viewed as the

derivative of entropy, it represents the distribution of

the entropy around the average entropy of the species

Cp;i=R � �1=R�2�h�Si;j�2i ÿ h�Si;j�i2� (13)

The dispersion around the average entropy is due to

the changes in the translational, rotational, and vibra-

tional degrees of freedom. The distinction between the

dispersions of the Eqs. (12) and (13) is not possible by

thermal measurements. The only change that can be

observed experimentally is the ratio between the

change of temperature �T and the heat added to or

subtracted from the system.

2.3. Thermo-osmotic no-reaction partition function

The thermo-osmotic non-reacting ensemble nret,o is

open to exchange of both matter and heat. The system
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is contained in a diathermal vessel with communica-

tion with the surroundings by means of a speci®c

permeable membrane. Even one single component of

a reacting ensemble can be considered as a non-

reacting subensemble. The total differential of the

thermo-osmotic no-reaction partition function can

be calculated by recalling the de®nition of thermal

ensemble which is independent from the concentration

and the de®nition of osmotic ensemble which is iso-

thermal and isoenthalpic. Therefore, the total differ-

ential for a component A is

d ln��AÿA� � d ln�A � d lnÿA (14)

The ®rst term of the right-hand side (RHS) can be

differentiated with respect to lnT thus obtaining, by

recalling the Eqs. (10) and (11)

d�sA=R��A� � �Cp;A=R�@lnT (15)

The second term of the RHS of the Eq. (14) can be

differentiated with respect to ln[A] thus obtaining, by

recalling the Eq. (3)

d�sA=R�T � ÿd ln�A� (16)

We assume that the change of probability due to the

change of temperature is equivalent to the change of

probability due to a virtual change of concentration

d�sA=R�T � d�sA=R��A� (17)

and hence

Cp;Ad ln T � ÿR d ln�A� (18)

This is the mathematical expression of the thermal

equivalent dilution [2]. It is equivalent to the adiabatic

work for ideal gases [4].

2.4. Reaction partition function

The thermal reacting ensemble ret is open to the

exchange of heat and closed to the exchange of matter.

Even in this case, however, there is redistribution of

populations among the different levels. The process of

redistribution can be accompanied by heat effects

which are compensated by dilution effects if the

process is conducted isothermally. If the thermal

reacting ensemble ret is open to the exchange of

matter but not to the exchange of heat the system

undergoes a reaction transformation which is accom-

panied by redistribution of matter and by internal heat

effects which can produce a change of the tempera-

ture. If the reacting ensemble is open to the exchange

of both matter and heat the transformation produces

changes in the distribution of the species which are

accounted for by the partition function. Again, an

isothermal process is suited to evaluate the whole

transformation in terms of total entropy change.

The reaction partition function, ZM is suited to the

representation of the concentration distributions

among the i levels either because of a change of

concentration or of temperature

ZM �
Xi�t

i�0

�i�A�i (19)

where M is the reacting receptor, [A] is the concen-

tration of the reacting ligand, and �i is the cumulative

formation constant for the species MAi

�i � �MAi��M�ÿ1�A�ÿi
(20)

The reaction partition function is the product of the

probability enthalpy factor exp(ÿ�HF/RT) times the

probability entropy factor, exp(�SF/R) for the forma-

tion of the species present in solution at a certain stage

of the reaction. The product is the joined probability of

the state, exp(ÿ�GF/RT)

ZM � exp�ÿ�GF=RT�
� exp�ÿ�HF=RT�exp��SF=R� (21)

The enthalpy �HF is actually a weighted average

enthalpy depending on the advancement of the reac-

tion

ÿ�HF � ÿn�H0 (22)

where n is the average number of ligand A bound per

mole of receptor M or Bjerrum formation function and

�H0 the speci®c site enthalpy for binding one ligand

A to one site of the receptor M. The same weighted

average holds for the entropy �SF and for the free

energy �GF. Note that the weighted average conforms

with average binding energy (BE) of Ben-Naim [5] for

generalized molecular distribution functions (GMDF).

ZM gives the probability of ®nding in solution and

species MAi, where free M is assumed as the reference

state. When the receptor M represents more classes of

binding sites, the partition function can be factorized

into class partition functions. Cooperativity effects

among sites of the same class can be accounted for
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by introducing appropriate cooperativity functions in

the partition function [6,7].

Alternatively the sate of the solution can be

described by a dissociation partition function, ZD
M

which gives the probability of ®nding in the solution

any species MAi, when the completely saturated

complex, MAt is assumed as the reference state.

The coef®cients of this polynomial are dissociation

constants, �ÿ1
i

ZD
M �

Xi�t

i�0

��tÿi�A��tÿi
(23)

The ratio of the two partition functions

ZM=ZD
M � FC

M gives the ratio between the probability

of formation and the probability of dissociation at

some chosen value of ln[A]. The ratio FC
M is another

partition function, the saturation function

FC
M � �t��A��t (24)

At standard unit concentration, one obtains the

standard saturation function, F
C�
M . The saturation func-

tion can be factorized into stepwise formation con-

stants

FC
M � �K1�A���K2�A�� . . . �Ki�A�� . . . �Kt�A��

(25)

In standard unit concentration, [A]�1, the standard

saturation function, F
C�
M is the product of the stepwise

formation constants Ki.

Note that in a one-site receptor, the saturation

function is identical with the site af®nity constant, k

times the concentration of the ligand

FC
M � k�A� (26)

In some cases, the distribution of the solute species

can be described by the total partition function

�M�[M]ZM.

Depending on the problem at hand, the different

reaction partition functions can be employed to

describe the properties of the system. In particular,

we recall the principle that the equilibrium constant

itself is a type of partition function [3] to which the

same properties can be assigned as the reaction parti-

tion function.

The reaction partition function can be derived with

respect to (1/T) and/or ln[A] corresponding to

exchange of heat or matter. The derivative of lnZM

with respect to the reciprocal temperature is the

average enthalpy of the reaction

@lnZM=@ln�1=T� � hÿ�HF=Ri � ÿ�HF=R

(27)

The enthalpy of the reaction, ÿ�Hf can be found

from the derivative of lnk against 1/T (van't Hoff

equation)

@lnk=@ln�1=T� � ÿ�H� (28)

The equilibrium constant is determined by isothermal

experiments at different temperatures.

The derivative of lnZM with respect to dilution of

the ligand is the mean number of ligand bound per

molecule of receptor or Bjerrum formation function

and at the same time is the change of entropy due to

the dilution of the ligand.

@lnZM=@ln�A� � n � �S=R (29)

The second derivative of lnZM with respect to tem-

perature is the heat capacity change �Cp/R

@2lnZM=@ln�1=T�@T � �Cp=R (30)

and is found from the change of the slope in the plot of

lnk against 1/T provided that ZM is the true and only

partition function describing the behaviour of the

system.

The second mixed derivative of lnZM with respect to

temperature and dilution of the ligand is an apparent

isobaric heat capacity �Cp,app/R. The second mixed

derivative for a 1 : 1 complex, on the assumption that

�Cp,app/R��Cp/R is related to the molar fraction by

@2lnZM=@�ln�A��@�lnT� � ÿ@�=@�lnT�
� �Cp;app=R � ÿ�ÿ�H=RT � Cp;A=R�

(31)

which comes out to be negative for exothermic and

positive for endothermal reactions. The apparent iso-

baric heat capacity is found in DSC experiments

where the temperature is changing. The equilibrium

is displaced even if the system is closed to the addition

of substance from outside. It can also be obtained from

values of equilibrium constant at different tempera-

tures, if the ligand A is the solvent and the system can

be considered as a convolution of two ensembles [8,9].

In this case, the reaction is completely displaced

toward the maximum coordination number and the
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value comes out to be multiplied by the number of

ligand (solvent), nw involved in the reaction.

In case of multiple complexation reaction, the

apparent isobaric heat capacity is calculated by con-

sidering that the molar fraction is a particular value of

n. The ®rst derivative with respect to lnT is n which can

be further derived with respect to ln[A]

�Cp;app=R � @2lnZM=�@ln�A�@lnT�

� ÿ
Xi�t

i�1

�i�iÿ n��1=i���ÿ�Hi=RT

� iCp;A=R� (32)

where the enthalpy ÿ�Hi is the enthalpy change for

the cumulative formation constant �i of the complex

M�iA�MAi.

3. Chemical potential

The reacting ensemble is suited to de®ne the che-

mical potential, � of the ligand. Consider a solution

where receptor M and ligand A bind to form com-

plexes MpAq with 0�p, q�tp, tq. The chemical poten-

tial of the ligand A is de®ned as

@f��GA=RT�=@nA
Mg�M�;T ;P � �A=RT (33)

where nA
M is the mean number of ligand A bound to M.

The free energy, ÿ�GA/RT�ln ZM is related to nA
M

also by the relation (Fig. 1)

@f�ÿ�GA=RT�=@ln�A�g � nA
M (34)

from which the total free energy can be obtained by

integration

ÿ�GA=RT �
Z

dfÿ�GA=RT� �
Z

nA
Md ln�A�

(35)

The RHS of the Eq. (34) can be integrated by parts,

thus yielding

ÿ�GA=RT � �nA
Mln�A���A�1 ÿ

Z 0

�A�
ln�A�dnA

M

(36)

which transforms the integral of the Eq. (35) into a

function of the differential dnA
M. The differential of the

Eq. (36) is

@f�ÿ�GA=RT�=@nA
Mg � ln�A� (37)

By comparison with the Eq. (33) we can write

@f��GA=RT�=@nA
Mg�M�;T ;P � �A=RT � ln�A�

(38)

This equality de®nes also the differential of the che-

mical potential of the ligand A

d�A=RT � d ln�A� (39)

For complexes MpAq suf®ciently strong that

ZM�k�1, the Eq. (36) gives the standard free energy,

�G
�
A=RT . In fact, if [A]�1, the ®rst term on the RHS

vanishes and the second term, integrated between the

limits [A]�0 and [A]�1, yields

ÿ�G
�
A=RT � lnk (40)

In weak complexes or multiple complexes MpAq,

the saturation function FM�ln �t [A]t (cfr. Eq. (5))

must be used. In the presence of excess A, the only

complex present is MpAt and on the other hand, if

hÿ�HAi/RT!0, the reacting ensemble tends to the

microcanonical ensemble. Under these conditions, the

limit is

limh�HAi!0@f��GA=RT�=@nA
Mg�M�;T ;P

� GA;t=RT � �A=RT (42)

which holds for non-reacting microcanonical ensem-

ble.

The chemical potential of M can be de®ned in a

similar way by reference to the partition function ZAFig. 1. Bjerrum plane.
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where A is considered the receptor and M the ligand.

The formation function nM
A giving the mean number of

M bound to A is employed. Alternatively, in poly-

nuclear complexes MpAq with p>1, the chemical

potential �M of M can be calculated from ZM by

nM
M, which is the average number of M bound to

M.

The diagram of Fig. 2 is actually an entropy plane

because both the axes represent entropic quantities,

namely nA
M represent the induced dilution of the ligand

and ÿln[A] represents the ®nal dilution of the free

ligand. This entropy plane (nA
M, ln[A]) spans the whole

information projected and contained in the abscissa

axis of the thermodynamic space. This abscissa

expresses (i) the intrinsic entropy change, �S/R, (ii)

the projected equivalent enthalpy change, �SH/

R�ÿ�H/RT, (iii) the projected free energy or total

entropy change, �Stot/R�ÿ�G/RT, and (iv) the dilu-

tion of the free ligand, ÿln[A].

On these grounds, the entropy plane is suited to

show how the enthalpy and the entropy change can

also be assigned a chemical potential, ��H/RT and

��S/RT, respectively. The whole area below the curve

equals the standard free energy change ÿ�G
�
A=RT

of the Eq. (40), obtained by integration of the

Eq. (35)

ÿ�G
�
A=RT � a� b (43)

where a � �S
�
A=RT and b � ÿ�H

�
A=RT . Either the

total area (a�b) or the partial area a or b can be

obtained by integration of the respective potentials

@f��GA=RT�@nA
Mg�M�;T ;P � �A=RT (44)

@f��HA=RT�@nA
Mg�M�;T ;P;S � �A;�H=RT (45)

@f��SA=RT�@nA
Mg�M�;T ;P;H � �A;�S=RT (46)

Note that the potentials of the Eqs. (44) and (45) are

different although their differentials are equal

d�A � �d�A;�H�S � �d�A;�S�H � RT d ln�A�
(47)

4. Conclusion

The statistical model for solutions which is based on

the principle that the systems can be either non-

reacting or reacting depending upon the non-existence

or existence, respectively of well-separated enthalpy

levels, is described at the macroscopic level by means

of molar partition functions. The derivatives of the no-

reaction and reaction partition functions with respect

to the variables concentration and temperature corre-

spond to the experimental observables. Therefore, the

partition functions are fundamental tools for the math-

ematical representation and molecular interpretation

of the experimental thermodynamic data.

5. List of symbols

��A standard chemical potential

nreo osmotic non-reacting ensemble

�i thermal canonical partition function

hHi,ji average enthalpy

j index of sublevel

i index of level or species

�H0 specific site enthalpy

ZD
M dissociation partition function

FC
M saturation function (formation/dissocia-

tion)

F
C�
M standard saturation function

Ki stepwise formation constant

�M total partition function

nw number of water molecules

MpAq complex

��H enthalpy chemical potential

Fig. 2. Definition of chemical potential from reaction partition

function.
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��S entropy chemical potential

R gas constant

T absolute temperature
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